Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668626

RESUMO

Green pit viper bites induce mild toxicity with painful local swelling, blistering, cellulitis, necrosis, ecchymosis and consumptive coagulopathy. Several bite cases of green pit vipers have been reported in several south-east Asian countries including the north-eastern region of India. The present study describes isolation and characterization of a haemostatically active protein from Trimeresurus erythrurus venom responsible for coagulopathy. Using a two-step chromatographic method, a snake venom serine protease erythrofibrase was purified to homogeneity. SDS-PAGE of erythrofibrase showed a single band of ~30 kDa in both reducing and non-reducing conditions. The primary structure of erythrofibrase was determined by ESI LC-MS/MS, and the partial sequence obtained showed 77% sequence similarity with other snake venom thrombin-like enzymes (SVTLEs). The partial sequence obtained had the typical 12 conserved cysteine residues, as well as the active site residues (His57, Asp102 and Ser195). Functionally, erythrofibrase showed direct fibrinogenolytic activity by degrading the Aα chain of bovine fibrinogen at a slow rate, which might be responsible for causing hypofibrinogenemia and incoagulable blood for several days in envenomated patients. Moreover, the inability of Indian polyvalent antivenom (manufactured by Premium Serum Pvt. Ltd., Maharashtra, India) to neutralize the thrombin-like and plasmin-like activity of erythrofibrase can be correlated with the clinical inefficacy of antivenom therapy. This is the first study reporting an α-fibrinogenase enzyme erythrofibrase from T. erythrurus venom, which is crucial for the pathophysiological manifestations observed in envenomated victims.


Assuntos
Venenos de Crotalídeos , Fibrinogênio , Trimeresurus , Animais , Índia , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/química , Fibrinogênio/metabolismo , Fibrinogênio/química , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Sequência de Aminoácidos , Mordeduras de Serpentes/tratamento farmacológico
2.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500238

RESUMO

Cardiovascular diseases represent the main cause of death. A common feature of cardiovascular disease is thrombosis resulting from intravascular accumulation of fibrin. In the last years, several fibrinolytic enzymes have been discovered in many medicinal or edible mushrooms as potential new antithrombotic agents. This study aimed to compare the fibrin(ogen)olytic activity of crude extracts from the fruiting bodies of four cultivated edible mushrooms: Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, and Agrocybe aegerita. Fibrin(ogen)olytic activity was assessed by fibrin plate, spectrophotometric assay and electrophoretic analysis (SDS-PAGE and zymography). The highest activity was detected for P. ostreatus followed by P. eryngii, L. edodes and A. aegerita. Results indicated that enzymes exhibited maximum activity at pH 6-7 and 30-40 °C, respectively. Enzyme activity was inhibited by serine and metalloprotease inhibitors. We proposed a new index called the Specific Fibrin(ogen)olytic Index (SFI), which allows specification of the proportion of the total proteolytic capacity due to the fibrin(ogen)olytic activity. These data suggest that the extracts from fruiting bodies or powdered mushrooms can be used as functional ingredients for the development of new functional foods that may act as thrombolytic agents responding, at the same time, to the increasing demand for safe, healthy and sustainable food.


Assuntos
Fibrina , Trombose , Humanos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Trombose/tratamento farmacológico , Peptídeo Hidrolases
3.
J Ethnopharmacol ; 273: 114000, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33705919

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In folk medicine, parts of Plumeria alba L. are used for the treatment of many diseases, with its latex being used for curing skin diseases and promoting wound healing. AIM OF THE STUDY: This study aimed to study the role of P. alba L. latex in hemostasis and platelet aggregation. MATERIALS AND METHODS: The latex of P. alba L. was processed to remove waxes and enrich protein content, and the final extract was named Plumeria alba L. natant latex (PaNL). PaNL was analyzed for protease activity against casein. The type of protease in PaNL was identified by using protease inhibitors such as E-64, phenylmethylsulfonyl fluoride, ethylenediaminetetraacetic acid, and pepstatin A. Human fibrinogen, fibrin, and collagen types I and IV were subjected to hydrolysis with different concentrations of PaNL. The thrombin-like activity of PaNL was determined by analyzing its fibrinogen-clotting and procoagulant activities. The role of PaNL in platelet aggregation was also investigated. Its hemorrhagic and edema-inducing activities were evaluated in a mouse model. Phytochemical compounds were identified by gas chromatography-mass spectroscopy. RESULTS: The findings of casein/gelatin zymography confirmed that PaNL possesses protease activity. The results of the protease inhibition study indicated the presence of a cysteine-type protease(s) in PaNL. PaNL hydrolyzed the subunits of fibrinogen, fibrin, and collagen types I and IV. Its fibrin-degradation activity indicated that PaNL possesses plasmin-like activity. PaNL induced clotting of citrated human plasma within 3 min of incubation in the absence of CaCl2, indicating the presence of thrombin-like activity, which was further confirmed by the results of the fibrinogen-clotting assay. PaNL induced platelet aggregation in the absence of agonists. There was no hemolytic activity. Mice injected with PaNL did not show edema/ hemorrhagic activity. CONCLUSION: PaNL possesses procoagulant, fibrino(geno)lytic, thrombin- and plasmin-like activities and induces platelet aggregation, which could explain its usage for wound treatment in folk medicine.


Assuntos
Apocynaceae/química , Cisteína Proteases/metabolismo , Fibrinolisina , Látex/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Trombina , Animais , Coagulação Sanguínea/efeitos dos fármacos , Cisteína Proteases/genética , Edema/induzido quimicamente , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Hemorragia/induzido quimicamente , Látex/efeitos adversos , Látex/química , Masculino , Camundongos , Compostos Fitoquímicos , Fitoterapia
4.
Nat Prod Res ; 35(16): 2640-2646, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31441669

RESUMO

Protease (PPL) was isolated from Pseuderanthemum latifolium B. Hansen and had a molecular mass of 70 kDa. The N-terminal sequence of PPL showed 70-80% similarity with of subtilisin-like serine proteases from plants, but it did not show any sequence homology with known plant proteases. Serine protease inhibitors (PMSF, DFP) effectively blocked about 90% of PPL activity. PPL was highly activity at the pH range from 6 to 9 and temperatures from 50 °C to 80 °C, with an optimum at pH 7.0 and temperatures 70 °C. PPL had stability in a variety of pH, temperature, surfactant and oxidizing agents. PPL with concentration of 2.5 µg completely hydrolyzed the Aα-chain of fibrinogen within 5 min and hydrolyzed the Bß and the γ-chain after 10 h. Fibrin also was strong hydrolyzed by PPL with concentration of 0.3 µg. Thus, PPL is a unique serine protease, which it had strong fibrino(geno)lytic activities.


Assuntos
Acanthaceae/enzimologia , Serina Proteases/química , Sequência de Aminoácidos , Estabilidade Enzimática , Fibrina , Fibrinogênio , Concentração de Íons de Hidrogênio , Temperatura
5.
Biochimie ; 179: 54-64, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32946987

RESUMO

Snakebite envenoming is still a worrying health problem in countries under development, being recognized as a neglected disease by the World Health Organization. In Latin America, snakes from the genus Bothrops are widely spread and in Brazil, the Bothrops moojeni is a medically important species. The pharmacological effects of bothropic snake venoms include pain, blisters, bleeding, necrosis and even amputation of the affected limb. Snake venom metalloproteinases are enzymes abundantly present in venom from Bothrops snakes. These enzymes can cause hemorrhagic effects and lead to myonecrosis due to ischemia. Here, we present BmooMP-I, a new P-I class of metalloproteinase (this class only has the catalytic domain in the mature form) isolated from B. moojeni venom. This protein is able to express fibrinogenolytic and gelatinase activities, which play important roles in the prey's immobilization and digestion, and also induces weak hemorrhagic effect. The primary sequence assignment was done by a novel method, SEQUENCE SLIDER, which combines crystallographic, bioinformatics and mass spectrometry data. The high-resolution crystal structure reveals the monomeric assembly and the conserved metal binding site H141ExxH145xxG148xxH151 with the natural substitution Gly148Asp that does not interfere in the zinc coordination. The presence of a structural calcium ion on the surface of the protein, which can play an important role in the stabilization of hemorrhagic toxins, was observed in the BmooMP-I structure. Due to the relevant local and systemic effects of snake venom metalloproteinases, studies involving these proteins help to better understand the pathological effects of snakebite envenoming.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/enzimologia , Metaloproteases/química , Metaloproteases/farmacologia , Sequência de Aminoácidos , Animais , Cálcio/química , Cátions/química , Biologia Computacional , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Cristalização , Cristalografia por Raios X , Bases de Dados de Proteínas , Fibrinogênio/metabolismo , Gelatina/metabolismo , Hemorragia/enzimologia , Espectrometria de Massas , Metaloproteases/isolamento & purificação , Camundongos , Modelos Moleculares , Alinhamento de Sequência , Análise de Sequência de Proteína , Pele/enzimologia , Pele/metabolismo
6.
Thromb Res ; 191: 57-65, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388190

RESUMO

BACKGROUND: There is a need to identify and develop novel thrombolytic agents that can directly digest fibrin clots from various biological resources. OBJECTIVE: To clone, express, purify, and characterize a recombinant protease named rvFMP capable of cleaving fibrinogen, fibrin polymer, and cross-linked fibrin in human plasma milieu and rat thrombosis model systems. RESULTS: We cloned a vFMP-encoding gene from the genomic DNA of V. furnissii KCCM41679 using polymerase chain reaction (PCR), expressed in Escherichia coli, and purified rvFMP (stands for recombinant vibrio furnissii metalloprotease). The proteolytic activity of purified rvFMP enzyme could be clearly inhibited by 1,10-phenanthroline and ethylene glycol tetraacetic acid, but not by diisopropyl fluorophosphate, suggesting that it can be a typical metalloprotease. rvFMP showed an effective proteolytic activity in cleaving cross-linked fibrins in human plasma milieu. Remarkably, rvFMP exhibited a clear thrombolytic activity in rat thrombosis models such as ferric chloride-exposed rat carotid artery and carrageenan-treated rat tail. However, rvFMP (1.5 mg/kg) evoked no internal bleeding and also showed no lethal effect in mice. The recombinant enzyme also showed no cytotoxicity and had an inability to induce tumour necrosis factor-α (TNF-α) in Raw264.7 cells. CONCLUSION: rvFMP can be a candidate enzyme capable of being developed as a novel direct-acting thrombolytic agent.


Assuntos
Clonagem Molecular , Fibrinolíticos , Peptídeo Hidrolases , Trombose , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Humanos , Camundongos , Plasma , Ratos , Trombose/tratamento farmacológico , Vibrio
7.
Int J Biol Macromol ; 145: 998-1007, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678105

RESUMO

A serine protease designated as EuRP-61 was purified from Euphorbia resinifera latex. The N-terminal sequence of 15 amino acids of EuRP-61 supported the conclusion that the enzyme was a serine protease because its amino acid sequence had homology (between 50 and 70% identities) with the subtilisin-like proteases of other plants. EuRP-61 had a molecular weight estimated at 61 kDa analyzed by MALDI-TOF MS. The enzyme could cleave human fibrinogen with optimal conditions at pH 5.0 and 45 °C. The enzyme had a broad range of pH stability from 1 to 14 and tolerance to denaturation up to a temperature of approximately 65-66 °C. EuRP-61 hydrolyzed fibrinogen with a Michaelis constant (Km) of 4.95 ±â€¯0.1 µM; a maximal velocity (Vmax) of 578.1 ±â€¯11.81 ng min-1; and a catalytic efficiency (Vmax/Km) of 116.8 ±â€¯1 ng µM-1 min-1. EuRP-61was crystallized under the condition of sodium iodide (0.2 M), Bis-Tris propane (0.1 M, pH 8.5) and PEG3350 (20%) by the sitting-drop method. The crystal belonged to space group P212121, with unit cell dimension a = 109.91, b = 67.38 and c = 199.45 Šand diffracted X-ray to 2.53 Šresolution. The crystal structure of EuRP-61 will be explored further by special phase solving techniques.


Assuntos
Euphorbia/química , Euphorbia/enzimologia , Látex/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Estabilidade Enzimática , Fibrinogênio/metabolismo , Fibrinolíticos/química , Glicoproteínas/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Análise de Sequência de Proteína , Homologia de Sequência , Serina Endopeptidases/química , Serina Proteases/química , Especificidade por Substrato , Temperatura , Oligoelementos/análise
8.
Int J Biol Macromol ; 144: 53-66, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838071

RESUMO

Phospholipase A2 (PLA2) is the main constituent of snake venom. PLA2 enzymes catalyze the Ca2+ dependent hydrolysis of 2-acyl ester bonds of 3-sn-phospholipids, releasing fatty acids and lysophospholipids. Inside the body of the victim, PLA2 from snake venom induces either direct or indirect pathophysiological effects, including anticoagulant, inflammatory, neurotoxic, cardiotoxic, edematogenic, and myotoxic activities. Therefore, there is a need to find the potential inhibitors against PLA2 responsible for snakebite. In this study, we employed in silico and in vitro methods to identify the potential inhibitor against PLA2. Virtual screening and molecular docking studies were performed to find potent inhibitor against PLA2 using Traditional Chinese Medicine Database (TCM). Based on these studies, Scutellarin (TCM3290) was selected and calculated by density functional theory calculation at B3LYP/6-31G**++ level to explore the stereo-electronic features of the molecule. Further, molecular docking and DFT of Minocycline was carried out. Quantum polarized ligand docking was performed to optimize the geometry of the protein-ligand complexes. The protein-ligand complexes were subjected to molecular dynamics simulation and binding free energy calculations. The residence time of a protein-ligand complex is a critical parameter affecting natural influences in vitro. It is nonetheless a challenging errand to expect, regardless of the accessibility of incredible PC assets and a large variety of computing procedures. In this metadynamics situation, we used the conformational flooding technique to deal with rank inhibitors constructions. The systematic free energy perturbation (FEP) protocol and calculate the energy of both complexes. Finally, the selected compound of TCM3290 was studied in vitro analysis such as inhibition of PLA2 activity, hyaluronidase activity and fibrinogenolytic activity. The TCM3290 had a more binding affinity compare to Minocycline, and interacted with the key residues of TYR63 and GLY31. DFT represented the highest HOMO and LUMO energy of 0.15146 eV. MD simulation with 100 ns proved that an inhibitor binding mode is more stable inside the binding site of PLA2. In vitro analysis shows that TCM3290 significantly neutralized by PLA2. The above observations confirmed that Scutellarin (TCM3290) had a potent snake venom neutralizing capacity and could hypothetically be used for therapeutic drives of snakebite envenomation.


Assuntos
Simulação por Computador , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/metabolismo , Sítios de Ligação , Teoria da Densidade Funcional , Avaliação Pré-Clínica de Medicamentos , Fibrinogênio/metabolismo , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , Ligação de Hidrogênio , Ligantes , Minociclina/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Termodinâmica , Fatores de Tempo
9.
Toxicol In Vitro ; 60: 330-335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31170449

RESUMO

Envenomations by venomous snakes have major public health implications on a global scale. Despite its medical importance, snakebite has long been a neglected tropical disease by both governments and medical science. Many aspects of the resulting pathophysiology have been largely under-investigated. Most research on snake venom has focused on the neurological effects, with coagulotoxicity being relatively neglected, especially for venoms in the Elapidae snake family. In order to fill the knowledge gap regarding the coagulotoxic effects of elapid snake venoms, we performed functional activity tests to determine the fibrinogenolytic activity of 29 African and Asian elapid venoms across eight genera. The results of this study revealed that destructive (non-clotting) fibrinogenolytic activity is widespread across the African and Asian elapids. This trait evolved independently twice: once in the Hemachatus/Naja last common ancestor and again in Ophiophagus. Further, within Naja this trait was amplified on several independent occasions and possibly explains some of the clinical symptoms produced by these species. Species within the Hemachatus/Naja with fibrinogenolytic activity only cleaved the Aα-chain of fibrinogen, whereas Ophiophagus venoms degraded both the Aα- and the Bß-chain of fibrinogen. All other lineages tested in this study lacked significant fibrinogenolytic effects. Our systematic research across Afro-Asian elapid snake venoms helps shed light on the various molecular mechanisms that are involved in coagulotoxicity within Elapidae.


Assuntos
Venenos Elapídicos/toxicidade , Fibrinogênio/metabolismo , Fibrinolíticos/toxicidade , Animais , Comportamento Animal , Elapidae
10.
Toxins (Basel) ; 11(5)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067768

RESUMO

The functional activities of Anguimorpha lizard venoms have received less attention compared to serpent lineages. Bite victims of varanid lizards often report persistent bleeding exceeding that expected for the mechanical damage of the bite. Research to date has identified the blockage of platelet aggregation as one bleeding-inducing activity, and destructive cleavage of fibrinogen as another. However, the ability of the venoms to prevent clot formation has not been directly investigated. Using a thromboelastograph (TEG5000), clot strength was measured after incubating human fibrinogen with Heloderma and Varanus lizard venoms. Clot strengths were found to be highly variable, with the most potent effects produced by incubation with Varanus venoms from the Odatria and Euprepriosaurus clades. The most fibrinogenolytically active venoms belonged to arboreal species and therefore prey escape potential is likely a strong evolutionary selection pressure. The results are also consistent with reports of profusive bleeding from bites from other notably fibrinogenolytic species, such as V. giganteus. Our results provide evidence in favour of the predatory role of venom in varanid lizards, thus shedding light on the evolution of venom in reptiles and revealing potential new sources of bioactive molecules useful as lead compounds in drug design and development.


Assuntos
Fibrinogênio/química , Lagartos , Peçonhas/química , Animais , Coagulação Sanguínea , Humanos , Tromboelastografia
11.
Regul Toxicol Pharmacol ; 103: 282-291, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30790607

RESUMO

The fibrinolytic enzyme produced by Mucor subtilissimus UCP 1262 was obtained by solid fermentation and purified by ion exchange chromatography using DEAE-Sephadex A50. The enzyme toxicity was evaluated using mammalian cell lineages: HEK-293, J774.A1, Sarcoma-180 and PBMCs which appeared to be viable at a level of 80%. The biochemical parameters of the mice treated with an acute dose of enzyme (2000 mg/mL) identified alterations of AST and ALT and the histomorphometric analysis of the liver showed a loss of endothelial cells (P < 0.001). However, these changes are considered minimal to affirm that there was a significant degree of hepatotoxicity. The comet assay and the micronucleus test did not identify damage in the DNA of the erythrocytes of the animals treated. The protease did not degrade the Aα and Bß chains of human and bovine fibrinogens, thus indicating that it does not act as anticoagulant, but rather as a fibrinolytic agent. The assay performed to assess blood biocompatibility shows that at dose of 0.3-5 mg/mL the hemolytic grade is considered insignificant. Moreover, the enzyme did not prolong bleeding time in mice when dosed with 1 mg/kg. These results indicate that this enzyme produced is a potential competitor for developing novel antithrombotic drugs.


Assuntos
Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Fibrinolíticos/toxicidade , Mucor/enzimologia , Peptídeo Hidrolases/toxicidade , Animais , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , Fibrinolíticos/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Peptídeo Hidrolases/administração & dosagem , Peptídeo Hidrolases/metabolismo
12.
Toxins (Basel) ; 11(2)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736322

RESUMO

Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. Further, the exposure of venoms to carbon monoxide (CO) or O-phenylhydroxylamine (PHA) modulate putative heme groups attached to key enzymes has also provided mechanistic insight into the multiple different activities contained in one venom. The present investigation used these techniques to characterize fourteen different venoms obtained from snakes from North, Central, and South America. Further, we review and present previous thrombelastographic-based analyses of eighteen other species from the Americas. Venoms were found to be anticoagulant and procoagulant (thrombin-like activity, thrombin-generating activity). All prospectively assessed venom activities were determined to be heme-modulated except two, wherein both CO and its carrier molecule were found to inhibit activity, while PHA did not affect activity (Bothriechis schlegelii and Crotalus organus abyssus). When divided by continent, North and Central America contained venoms with mostly anticoagulant activities, several thrombin-like activities, with only two thrombin-generating activity containing venoms. In contrast, most venoms with thrombin-generating activity were located in South America, derived from Bothrops species. In conclusion, the kinetomic profiles of venoms obtained from thirty-two Pan-American Pit Viper species are presented. It is anticipated that this approach will be utilized to identify clinically relevant hemotoxic venom enzymatic activity and assess the efficacy of locally delivered CO or systemically administered antivenoms.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Coagulantes/farmacologia , Venenos de Crotalídeos/farmacologia , Crotalinae , Animais , Anticoagulantes/química , América Central , Coagulantes/química , Venenos de Crotalídeos/química , Humanos , Hidroxilaminas/farmacologia , Cinética , América do Norte , Compostos Organometálicos/farmacologia , Plasma/efeitos dos fármacos , Plasma/fisiologia , América do Sul , Tromboelastografia
13.
Artigo em Inglês | MEDLINE | ID: mdl-30564275

RESUMO

BACKGROUND: Bitis arietans is a venomous snake found in sub-Saharan Africa and in parts of Morocco and Saudi Arabia. The envenomation is characterized by local and systemic reactions including pain, blistering, edema and tissue damage, besides hemostatic and cardiovascular disturbances, which can cause death or permanent disabilities in its victims. However, the action mechanisms that provoke these effects remain poorly understood, especially the activities of purified venom components. Therefore, in order to elucidate the molecular mechanisms that make the Bitis arietans venom so potent and harmful to human beings, this study reports the isolation and biochemical characterization of a snake venom serine protease (SVSP). METHODS: Solubilized venom was fractionated by molecular exclusion chromatography and the proteolytic activity was determined using fluorescent substrates. The peaks that showed serine protease activity were determined by blocking the proteolytic activity with site-directed inhibitors. In sequence, the fraction of interest was submitted to another cycle of molecular exclusion chromatography. The purified serine protease was identified by mass spectrometry and characterized biochemically and immunochemically. RESULTS: A serine protease of 33 kDa with fibrinogen-degrading and kinin-releasing activities was isolated, described, and designated herein as Kn-Ba. The experimental Butantan Institute antivenom produced against Bitis arietans venom inhibited the Kn-Ba activity. CONCLUSIONS: The in vitro activities of Kn-Ba can be correlated with the capacity of the venom to provoke bleeding and clotting disorders as well as hypotension, which are common symptoms presented by envenomed victims. Obtaining satisfactory Kn-Ba inhibition through the experimental antivenom is important, given the WHO's recommendation of immunotherapy in cases of human accidents with venomous snakes.

14.
Mar Drugs ; 16(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424528

RESUMO

The active sulfated polysaccharide from seaweed possesses important pharmaceutical and biomedical potential. In the study, Monostroma sulfated polysaccharide (MSP) was obtained from Monostroma angicava, and the low-molecular-weight fragments of MSP (MSP-Fs: MSP-F1⁻MSP-F6) were prepared by controlled acid degradation. The molecular weights of MSP and MSP-F1⁻MSP-F6 were 335 kDa, 240 kDa, 90 kDa, 40 kDa, 24 kDa, 12 kDa, and 6.8 kDa, respectively. The polysaccharides were sulfated rhamnans that consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ units with partial sulfation at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→. Anticoagulant properties in vitro of MSP and MSP-F1⁻MSP-F6 were evaluated by studying the activated partial thromboplastin time, thrombin time, and prothrombin time. Anticoagulant activities in vivo of MSP and MSP-F4 were further evaluated; their fibrin(ogen)olytic activities in vivo and thrombolytic properties in vitro were also assessed by D-dimer, fibrin degradation products, plasminogen activator inhibitior-1, and clot lytic rate assays. The results showed that MSP and MSP-F1⁻MSP-F4 with molecular weights of 24⁻240 kDa had strong anticoagulant activities. A decrease in the molecular weight of MSP-Fs was accompanied by a decrease in the anticoagulant activity, and higher anticoagulant activity requires a molecular weight of over 12 kDa. MSP and MSP-F4 possessed strong anticoagulant activities in vivo, as well as high fibrin(ogen)olytic and thrombolytic activities. MSP and MSP-F4 have potential as drug or helpful food supplements for human health.


Assuntos
Anticoagulantes/farmacologia , Clorófitas/química , Desoxiaçúcares/farmacologia , Fibrinolíticos/farmacologia , Mananas/farmacologia , Alga Marinha/química , Ácidos/química , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Testes de Coagulação Sanguínea , Desoxiaçúcares/química , Desoxiaçúcares/isolamento & purificação , Suplementos Nutricionais , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Humanos , Masculino , Mananas/química , Mananas/isolamento & purificação , Peso Molecular , Ratos , Ratos Sprague-Dawley , Análise Espectral/métodos , Sulfatos/química
15.
Mar Drugs ; 16(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037033

RESUMO

Great diversity and metabolite complexity of seaweeds offer a unique and exclusive source of renewable drug molecules. Polysaccharide from seaweed has potential as a promising candidate for marine drug development. In the present study, seaweed polysaccharide (SPm) was isolated from Monostroma angicava, the polymeric repeat units and anticoagulant property in vitro and in vivo of SPm were investigated. SPm was a sulfated polysaccharide which was mainly constituted by 3-linked, 2-linked-α-l-rhamnose residues with partially sulfate groups at C-2 of 3-linked α-l-rhamnose residues and C-3 of 2-linked α-l-rhamnose residues. Small amounts of xylose and glucuronic acid exist in the forms of ß-d-Xylp(4SO4)-(1→ and ß-d-GlcA-(1→. SPm effectively prolonged clotting time as evaluated by the activated partial thromboplastin time and thrombin time assays, and exhibited strong anticoagulant activity in vitro and in vivo. The fibrin(ogen)olytic and thrombolytic properties of SPm were evaluated by plasminogen activator inhibitior-1, fibrin degradation products, D-dimer and clot lytic rate assays using rats plasma, and the results showed that SPm possessed high fibrin(ogen)olytic and thrombolytic properties. These results suggested that SPm has potential as a novel anticoagulant agent.


Assuntos
Anticoagulantes/farmacologia , Desoxiaçúcares/química , Mananas/química , Alga Marinha/química , Sulfatos/química , Animais , Clorófitas/química , Fibrinolíticos/farmacologia , Masculino , Tempo de Tromboplastina Parcial/métodos , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Polissacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Trombina/métodos , Trombose/tratamento farmacológico
16.
Indian J Hematol Blood Transfus ; 34(2): 314-321, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29622876

RESUMO

The current study was carried out to evaluate the pharmacological properties of cupincin- A novel cupin domain containing metalloprotease with limited proteolysis from rice bran on blood coagulation and hydrolysis of human fibrinogen. Cupincin preferentially hydrolyzed the Aα chain of fibrinogen and then the Bß-chain, but not the γ-chain. Cupincin reduced the re-calcification time of citrated human plasma dose dependently. Analysis of citrated whole blood in the presence of cupincin by rotem showed a decrease in coagulation time and clot formation time. Sonoclot analysis indicated that cupincin cleaved fibrinogen of whole citrated blood. SDS-PAGE and sonoclot analysis (LI-30) indicated that cupincin lacked plasmin-like activity. Global hemostasis tests like rotem and sonoclot analysis determined cupincin as a procoagulant enzyme. Cupincin did not show any effect on prothrombin time and activated partial thromboplastin time tests suggesting its action on the common pathway of coagulation. The involvement of proteases from rice (Oryza sativa L.) in haemostasis has never been exploited before. This study could provide the basis for the development of new procoagulant agents from a nontoxic source like rice.

17.
Toxicon ; 144: 23-33, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407163

RESUMO

Bothrops venezuelensis snake venoms, from five localities in the North-Central Venezuelan regions, showed biochemical and haemostatic differences. In this study, bioactivities of B. venezuelensis venoms from different regions (Aragua state; Waraira Repano (Capital District); Baruta, La Boyera and Lagunetica (Miranda state)) were compared using both natural and synthetic substrates. The protein contents of these venoms were Lagunetica 89%, La Boyera 79%, Baruta 71%, Waraira Repano 68% and Aragua 64%. Toxic activities effects were: Intraperitoneal LD50s: Aragua-14 mg/kg; Waraira Repano-6.4 mg/kg; Baruta: 8.3 mg/kg; La Boyera-4.4 mg/kg; Lagunetica-16.2 mg/kg. The MHD results: Aragua-21.4 µg/mouse; Waraira Repano-2.5 µg/mouse; Baruta-1.2 µg/mouse; La Boyera-1.4 µg/mouse and Lagunetica-12 µg/mouse. The hide powder azure results: Aragua-1.24 U/mg; La Boyera-2.26 U/mg; Baruta-2.83 U/mg; Lagunetica-3.28 U/mg and Waraira Repano-5.77 U/mg. Esterase specific activity on BAEE results: Waraira Repano-666.66 U/mg; La Boyera-805.5 U/mg; Baruta-900.00 U/mg; Lagunetica-922.19 U/mg and Aragua-1960.67 U/mg. Casein zymography showed digestion bands in the molecular weight above 100 and at 66.2 and 21.5 kDa. Analysis of casein degradation by SDS-PAGE showed two different degradation patterns. Fibrinolytic activity (mm2/µg) on fibrin plates results: Aragua-6.07; Lagunetica-27.6; Waraira Repano-35.7; La Boyera-44.27 and Baruta-45.63. In the fibrinogenolytic assay, the five venoms completely degraded the α chain after 1 min of incubation. None of the venoms completely degraded the ß and γ chains after 24 h incubation. The research indicated that venoms of B. venezuelensis of different geographic areas in Venezuela exhibit variances in composition and component concentrations; except the Aragua venom, all of them had high proteolytic activities.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Animais , Coagulação Sanguínea/efeitos dos fármacos , Caseínas/metabolismo , Venenos de Crotalídeos/química , Venenos de Crotalídeos/enzimologia , Fibrinogênio/química , Fibrinólise/efeitos dos fármacos , Geografia , Hemorragia/induzido quimicamente , Dose Letal Mediana , Camundongos , Proteólise/efeitos dos fármacos , Venezuela
18.
Biotechnol Lett ; 40(1): 93-102, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28936710

RESUMO

OBJECTIVES: To identify a new member of serine proteases from Deinagkistrodon acutus via phage display technique and appraise its biocatalytic activities. RESULTS: A novel thrombin-like enzyme gene was cloned by screening the phage display library of D. acutus venom gland. The gene has a 783 bp ORF encoding 260 amino acids. A recombinant enzyme expression vector was constructed and the fused protein was expressed in Escherichia coli. The protein was purified showing a single band of approx. 49.4 kDa after SDS-PAGE. The recombinant enzyme was capable of congealing normal human plasma in vitro with the minimum coagulant dose of 6 µg in 57 s. It exhibited fibrinogenolytic activity by hydrolyzing the Aα-chain of human fibrinogen. It was most active at pH 7.5-8.0 and 35-40 °C with the highest clotting activity of 120 NIH units/mg. It was completely inhibited by PMSF but not by EDTA. Multiple sequence alignments demonstrate that this protein shares high identity with other thrombin-like enzymes from snake venoms. CONCLUSIONS: A novel thrombin-like protein from D. acutus venom was identified, expressed and biologically characterized in vitro. Its fibrinogenolytic properties make the enzyme applicable for biochemical research and drug development on thrombolytic therapy.


Assuntos
Crotalinae , Glândulas Exócrinas , Biblioteca Gênica , Proteínas Recombinantes de Fusão/metabolismo , Serina Proteases/metabolismo , Peçonhas/enzimologia , Animais , Coagulação Sanguínea , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrinogênio/metabolismo , Expressão Gênica , Testes Genéticos , Humanos , Concentração de Íons de Hidrogênio , Peso Molecular , Fases de Leitura Aberta , Biblioteca de Peptídeos , Plasma/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/isolamento & purificação , Temperatura
19.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-984690

RESUMO

Bitis arietans is a venomous snake found in sub-Saharan Africa and in parts of Morocco and Saudi Arabia. The envenomation is characterized by local and systemic reactions including pain, blistering, edema and tissue damage, besides hemostatic and cardiovascular disturbances, which can cause death or permanent disabilities in its victims. However, the action mechanisms that provoke these effects remain poorly understood, especially the activities of purified venom components. Therefore, in order to elucidate the molecular mechanisms that make the Bitis arietans venom so potent and harmful to human beings, this study reports the isolation and biochemical characterization of a snake venom serine protease (SVSP). Methods: Solubilized venom was fractionated by molecular exclusion chromatography and the proteolytic activity was determined using fluorescent substrates. The peaks that showed serine protease activity were determined by blocking the proteolytic activity with site-directed inhibitors. In sequence, the fraction of interest was submitted to another cycle of molecular exclusion chromatography. The purified serine protease was identified by mass spectrometry and characterized biochemically and immunochemically. Results: A serine protease of 33 kDa with fibrinogen-degrading and kinin-releasing activities was isolated, described, and designated herein as Kn-Ba. The experimental Butantan Institute antivenom produced against Bitis arietans venom inhibited the Kn-Ba activity. Conclusions: The in vitro activities of Kn-Ba can be correlated with the capacity of the venom to provoke bleeding and clotting disorders as well as hypotension, which are common symptoms presented by envenomed victims. Obtaining satisfactory Kn-Ba inhibition through the experimental antivenom is important, given the WHO's recommendation of immunotherapy in cases of human accidents with venomous snakes.(AU)


Assuntos
Animais , Venenos de Serpentes , Fibrinogênio , Antivenenos , Substratos para Tratamento Biológico , Serina Proteases , Relatório de Pesquisa , Cininas
20.
J Venom Anim Toxins Trop Dis, v. 24, 38, dez. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2645

RESUMO

Background Bitis arietans is a venomous snake found in sub-Saharan Africa and in parts of Morocco and Saudi Arabia. The envenomation is characterized by local and systemic reactions including pain, blistering, edema and tissue damage, besides hemostatic and cardiovascular disturbances, which can cause death or permanent disabilities in its victims. However, the action mechanisms that provoke these effects remain poorly understood, especially the activities of purified venom components. Therefore, in order to elucidate the molecular mechanisms that make the Bitis arietans venom so potent and harmful to human beings, this study reports the isolation and biochemical characterization of a snake venom serine protease (SVSP). Methods Solubilized venom was fractionated by molecular exclusion chromatography and the proteolytic activity was determined using fluorescent substrates. The peaks that showed serine protease activity were determined by blocking the proteolytic activity with site-directed inhibitors. In sequence, the fraction of interest was submitted to another cycle of molecular exclusion chromatography. The purified serine protease was identified by mass spectrometry and characterized biochemically and immunochemically. Results A serine protease of 33kDa with fibrinogen-degrading and kinin-releasing activities was isolated, described, and designated herein as Kn-Ba. The experimental Butantan Institute antivenom produced against Bitis arietans venom inhibited the Kn-Ba activity. Conclusions The in vitro activities of Kn-Ba can be correlated with the capacity of the venom to provoke bleeding and clotting disorders as well as hypotension, which are common symptoms presented by envenomed victims. Obtaining satisfactory Kn-Ba inhibition through the experimental antivenom is important, given the WHO's recommendation of immunotherapy in cases of human accidents with venomous snakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...